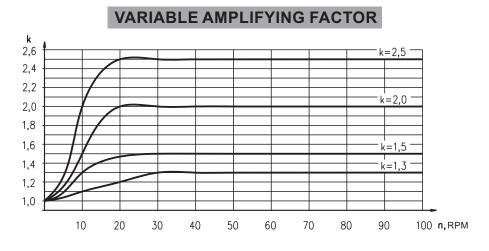
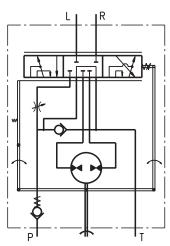
HYDROSTATIC STEERING UNIT TYPE HKUQ..../4

HKUQ.../4 is a new series of hydrostatic steering units with an additionally increased flow. The hydrostatic steering unit type HKUQ.../4 is available for steering medium and large sized vehicles, allowing easy control either in servo-amplified mode or in emergency operation.


HKUQ.../4 is an "Open Center-Non Load Reaction" hydrostatic steering in which restrictor for amplifying factor from 1,3 to 2,5 is built-in.


In accordance with the size of the gear wheel set and amplifying factor, HKUQ...4 has the following working volume:

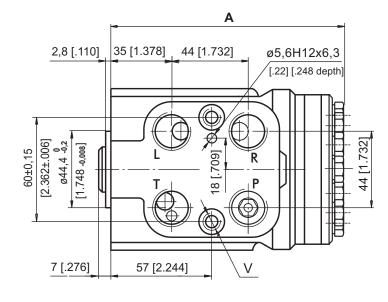
- from 80 cm3 to 200 cm3 for emergency operation mode (manual steering without servo-amplifying;

- from 100 cm3 to 500 cm3 for normal operation mode (with total flow amplifying).

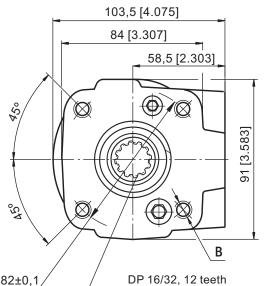
There is no servo-amplifying of flow if low steering speed up to 10 RPM is applied. In steering speed increase over 20 RPM there is total servo-amplifying of flow. In this mode gear wheel set flow and restrictor flow are added.

"Open Center - Non Load Reaction" HKUQ.../4

SPECIFICATION DATA


											-										
		Туре																			
Parameters			HKUQ				HKUQ				HKUQ				HKUQ			HKUQ			
			80//4				100//4				125//4			160//4			200//4				
Displacement																					
- without servo-amplifying		79,2			99,0				123,8			158,4			198						
(in emergency mode)	cm ³ /rev	[4.83]				[6.04]				[7.56]			[9.67]			[12.08]					
- with servo-amplifing		100			200		160		250	160	200		320	200	250	320	400	250	320	400	500
	[in ³ /rev]	[6.10]	[7.62]	[9.76]	[12.2]	[7.62]	[9.76]	[12.2]	[15.25]	[9.76]	[12.2]	[15.25]	[19.52]	[12.2]	[15.25]	[19.52]	[24.4]	[15.25]	[19.52]	[24.4]	[30.5]
Rated Flow*	l/min		12,5	16	20	12,5	16	20	25	16	20	25	32	20	25	32	40	25	32	40	50
	[GPM]	[2.64]	[3.30]	[4.22]	[5.28]	[3.30]	[4.22]	[5.28]	[6.60]	[4.22]	[5.28]	[6.60]	[8.45]	[5.28]	[6.60]	[8.45]	[10.57]	[6.60]	[8.45]	[10.57]	[13.21]
Amplifying Factor																					
(at shaft revolution over	20 min ⁻¹)	1,3	1,5	2,0	2,5	1,3	1,5	2,0	2,5	1,3	1,5	2,0	2,5	1,3	1,5	2,0	2,5	1,3	1,5	2,0	2,5
Rated Pressure bar [PSI]		170 [2465]																			
Max. Cont. Pressure			25 [363]																		
in Line T	bar [PSI]										25	[303]								
Max. Torque at												3									
Servoamplifying	Nm [lb-in]										[26]									
Max. Torque w/o			120 [1065]																		
Servoamplifying	Nm [lb-in]										120	[100	ວງ								
Weight, avg. kg			5,6 [12.4		5,7 [12.6]				5,8 [12.8]			6,0 [13.2]			6,3 [13.9]					
Dimension A mm [in]		136,2 [5.36]				138,8 [5.47]			142,2 [5.60]			146,8 [5.78]			152,2 [5.99]						

13

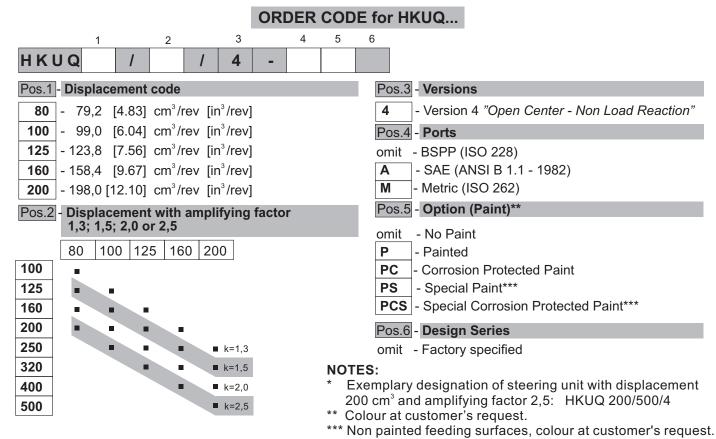

* Rated Flow at 100 RPM.

🗚 M+S HYDRAULIC

DIMENSIONS AND MOUNTING DATA

HKUQ.../... /4 STEERING UNITS

ø82±0,1 [3.228±.004]


ANS B92.1-1976, 17 [.67] depth

mm [in]

c od e	Ports - P*, T, R, L Thread	Column Mounting Thread - B	Valve Mounting Thread - V
-	G1/2 17 [.67] depth	4 x M10 18 [.71] depth	2 x M10x1 16[.63] depth
м	M22x1,5 17 [.67] depth	4 x M10 18 [.71] depth	2 x M10x1 16 [.63] depth
Α	3/4 - 16 UNF O-ring 17 [.67] depth	4 x 3/8 - 16 UNC 15,7 [.62] depth	2 x 3/8 - 24 UNF 14,2 [.56] depth

*Threaded Ports P min 15 [.59] depth for pipe mounting.

14

The steering units are mangano-phosphatized as standard.

GENERAL APPLICATION AND SPECIFICATION INFORMATION

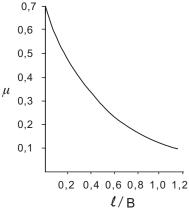
APPLICATION

(SIZING AND STEERING SYSTEM DESIGN PROCESS)

STEP ONE:

Calculate approximate kingpin torque (M_L).

$$M_{L} = G \cdot \mu \sqrt{\frac{B^{2}}{8} + \ell^{2}}$$


Note: Double M_L if steered wheels are powered.

M_L= Kingpintorque in daNm [*lb-in*].

- G = Vehicle weight on steered axle daN [*lbs*] (use maximum estimated overload weight).
- μ = Coefficient of friction (use Chart № 1, dimensionless) determined by ℓ/B (see Diagram № 1).
- B = Nominal width of tyre print, m[in] (see Diagram No 1).

l = Kingpin offset. The distance between tyre centerline intersection at ground and kingpins centerline intersection at ground in, m [*in*] (see DiagramNº1).

Chart № 1

Rubber tyres on dry concrete.

Diagram № 1

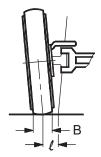
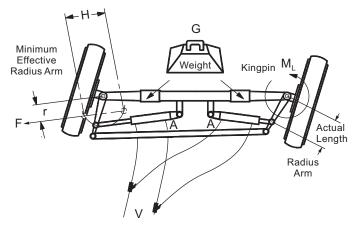
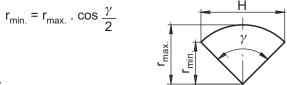



Diagram № 2

STEP TWO: Calculate approximate cylinder; force-area-strokevolume.


FORCE

$$F = \frac{M_L}{r}$$

F = Force required daN [*lbs*] to steer axle.

- M_L = Kingpin torque in daNm [*lb-in*] from step one. Double M_L if steered wheels are powered.
- r = Effective radius Arm mm [*in*] is the minimum distance from the centerline of the cylinders minimum and maximum stroke points parallel to the kingpin center pivot. This is not the physical length of the radius Arm (see Diagram № 2 and Chart № 2).

Chart № 2

STROKE

H = Stroke, cm [*in*].

Calculate stroke of cylinder using Diagram № 2 and Chart № 2 as shaft.

H = 2 r_{max.} .
$$\sin \frac{\gamma}{2}$$

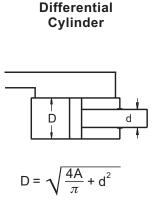
AREA

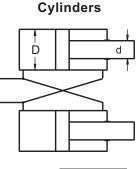
51

A = Cylinder area for axle cylinder set, $cm^{2}[in^{2}]$.

 $A = \frac{F}{AP}$

- F = Force required from step two force formula, daN [/bs].
- △P = Hydraulic pressure bar [*PSI*] use following percentage of relief valve setting by amount of load on steered axle. Severe load 25% - medium load 55% - no load 75%.

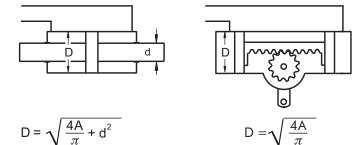



DIAMETER

After the cylinder set area is determined, the cylinder diameter can be calculated.

- D = Inside diameter of cylinder, cm [*in*].
- d = Road diameter of cylinder, cm [*in*].

Choose type of cylinder arrangement and formula shown for that type.


Cross Connected

 $D = \sqrt{\frac{2A}{\pi} + \frac{d^2}{2}}$

Note: $\left(\frac{d}{D}\right)^2 \le 0,15$

Balanced Cylinder

VOLUME V=H.A

V = Volume. The total amount of oil required to move the cylinder rod(s) through the entire stroke, $cm^{3}[in^{3}]$.

H = Stroke, cm [in].

A=Area, $cm^2[in^2]$.

Note: For differential cylinders it is important to calculate average cylinder volume for step three using below formula.

$$V_{avg.} = H \cdot \frac{\pi}{4} (2.D^2 - d^2)$$

STEP THREE:

Selecting displacement of hydrostatic steering unit.

At this point determine number of steering wheel revolutions desired for your application to steer the wheels from one side to the other (lock to lock). Depending on the type of vehicle and its use, this will vary from 3 to 5 turns.

DISPLACEMENT
$$V_{D} = \frac{V}{n}$$

 V_D = Displacement, cm³/rev [*in*³/*rev*]. V = Volume of oil, cm³ [*in*³]. n = Steering wheel turns lock to lock.

After completing the above displacement calculation, choose the <u>closest standard</u> hydrostatic steering unit in displacement size that incorporates circuity you require. Recalculate the number of steering wheel turns using the displacement of selected standard hydrostatic steering unit outlined above. Use the formula shown below.

$$n = \frac{V}{V_{D}}$$

V = Volume of oil, cm^{3} [*in*³].

n = Steering wheel turns lock to lock.

Note: For differential cylinders applications the cylinder volume will be different for left and right turns - this means the value *n* (steering wheel turns lock to lock) will vary when turning to the left or right.

STEP FOUR:

Calculate approximate minimum and maximum steering circuit flow requirements.

$$Q = \frac{V_D \cdot N}{\frac{\text{Unit Conversion for}}{\text{Imperial or [1000] Metric}}}$$

Q = Steering circuit flow, Ipm [*GPM*].

 $V_{\rm D}$ = Unit displacement, cm³/rev [*in*³/*rev*]

N = Steering wheel input speed, RPM.

Recommended steering speed is 50 to 100 RPM.

Many variables are involved in sizing the pump. We suggest that the manufacturer should test and evaluate for the desired performance.

GENERAL INFORMATION

FLUID DATA:

To insure maximum performance and life of the Hydrostatic steering units, use premium quality hydraulic oils. Fluids with effective quantities of anti-wear agents or additives are highly recommended. If using synthetic fluids consult the factory for alternative seal materials.

• Viscosity

Viscosity at normal operating temperature should be approx. 20 mm²/s [100 SUS]. Viscosity range 10 - 300 mm²/s [60 - 1500 SUS].

Temperature

Normal operating temperature range from $+30^{\circ}C$ [$+85^{\circ}F$] to $+60^{\circ}C$ [$140^{\circ}F$].

Minimum operating temperature -40° C [-40°F].

Maximum operating temperature +80°C [+176°F].

Note: Extended periods of operation at temperature of 60°C and above will greatly reduce the life of the oil due to oxidation and will shorten the life of the product.

Filtration

The maximum degree of contamination per ISO 4406 or All hydrostatic steering units should be installed for ease of CETOP RP is:

- -20/17 open center units
- 19/16 closed center and load sensing
- -16/12 priority valves

Return line filtration of $25 \,\mu m$ nominal (40 - 50 μm absolute) or finer is recommended.

In extremely dusty conditions filtration of 10 μm absolute should be used.

START UP

All air must be purged from system before operating unit. It is extremely important that any external lines or units with load sensing or priority feature be completely bled. Lines going to and from cylinders as well as lines to and from pump be purged of all air. It is recommended that a 10-15 μm filter be used between pump and steering unit before start up.

MOUNTING UNITS

access. It is recommended that the steering unit be located outside the vehicle cabin.

It is important that no radial axial load be applied to the hydrostatic steering unit input shaft. Some or all radial and axial loads must be absorbed by the steering column or other operating devices supplied by the vehicle manufacturer.

Ports on the steering cylinder(s) should face upward to prevent damage.

During installation of the hydrostatic steering unit, cleanliness is of the utmost importance. Pipe plugs should be left in place during mounting and only removed when hydraulic lines are to be connected.

CONVERSIONS

to convert inches and millimeters:

1 in = 25,4 mm

1 mm = .03973 in to convert gallons per minute and

liters per minute:

1 PSI = 0,0689 bar 1 bar =14.51 PSI

to convert pounds per square inch and bar:

to convert pounds-inch and newton-meters:

1 lb-in = 0.113 Nm 1 Nm = 8.85 lb-in

1 GPM = 3,785 lpm 1 lpm = .2642 GPM

TORQUE TIGHTENING VALUES

Fluid connections Max. tightening torque daNm [lb-in] Fluid connection metal copper aluminum O - ring edge washer washer 4,0 [350] 3,5 [309] 3,5 [309] G 1/4 7,0 [620] 4,5 [398] 5,0 [442] G 3/8 10,0 [885] 5,5 [486] G 1/2 8,0 [708] 9,0 [796] 13,0 [1150] G 3/4 18,0 [1593] 4,0 [350] 2,0 [180] 3,0 [265] M 10 x 1 M 18 x 1,5 8,0 [708] 5,5 [486] 7,0 [620] M 22 x 1,5 10,0 [885] 8,0 [708] 6,5 [575] 7/16 - 20 UNF 2,0 [180] 9/16 - 18 UNF 5,0 [442] 6,0 [531] 3/4 - 16 UNF 9,0 [796] 7/8 - 14 UNF 1 1/16 - 12 UN 12,0 [1062]

53

Mounting bolts

Mounting bolts	Tightening torque daNm [lb - in]						
3/8 - 16 UNC	3,0 ± 0,5 [230 ÷ 310]						
M 10 x 1	6,5 ± 0,5 [540 ÷ 620]						
M 10	3,0 ± 0,5 [230 ÷ 310]						

